
British Informatics Olympiad Final
11–13 April, 2003

Sponsored by Lionhead Studios

Compression
This question is quite long — do not worry if you do not get to the end

Storing large amounts of text, and transmitting it over computer networks, can be expensive
and time-consuming. It is often desirable to apply a compression algorithm to some text before it
is stored or transmitted. This is a procedure that takes some input text and produces some output
text, from which the original can be reconstructed exactly. There are other techniques where the
original is only approximately reconstructed; these do not concern us here. The aim is for the output
text to be smaller than the input text. In this question, we shall look at two algorithms used for
compression.

1. The LZ78 algorithm

The LZ78 algorithm, discovered by Lempel and Ziv in 1978, is the foundation on which a large
number of compression algorithms are built, including the LZW algorithm which is used for com-
pressing GIF and ZIP files. As LZ78 works through the input text it keeps a dictionary containing
some of the patterns it has already seen. When one of these patterns is repeated, the algorithm
produces a short code to signify the repetition rather than repeating the pattern. This usually takes
up less space. (Initially the dictionary contains a single pattern — the empty string.)

Question 1.1
Consider the string RobertTheRobotAteTheBananas. What patterns, with two or more letters,

are repeated?

In addition to the dictionary, LZ78 keeps track of a string, B, which contains the characters that
it has read, but not yet compressed; initially B is also the empty string. Characters are then read
from the input stream in order.

Suppose c has just been read. If the string made from adding c to the end of B is in the dictionary,
B becomes this new string and we move on to the next character. If this combined string is not in
the dictionary we output the pair (c, i), where B matches the ith entry in the dictionary, then add
combined string to dictionary, and finally reset B to the empty string. Since B only grows when the
combined string is in the dictionary, we can always find a suitable i.

Finally, after we have processed all the characters in the input, we need to indicate the final
value of B. This is done by outputting i, where B matches the ith entry in the dictionary.

For example, the following table shows the LZ78 algorithm being applied to the string amoamasamat:

‘’

a ‘’, ‘a’ (a,1)

m ‘’, ‘a’, ‘m’ (m,1)

o ‘’, ‘a’, ‘m’, ‘o’ (o,1)

a a ‘’, ‘a’, ‘m’, ‘o’

m ‘’, ‘a’, ‘m’, ‘o’, ‘am’ (m,2)

a a ‘’, ‘a’, ‘m’, ‘o’, ‘am’

s ‘’, ‘a’, ‘m’, ‘o’, ‘am’, ‘as’ (s,2)

a a ‘’, ‘a’, ‘m’, ‘o’, ‘am’, ‘as’

m am ‘’, ‘a’, ‘m’, ‘o’, ‘am’, ‘as’

a ‘’, ‘a’, ‘m’, ‘o’, ‘am’, ‘as’, ‘ama’ (a,5)

t ‘’, ‘a’, ‘m’, ‘o’, ‘am’, ‘as’, ‘ama’, ‘t’ (t,1)

‘’, ‘a’, ‘m’, ‘o’, ‘am’, ‘as’, ‘ama’, ‘t’ 1



The first column gives the character c read from the input stream. The second and third columns
give the contents of the compression buffer and the dictionary, after the processing of the character
c is complete. The final column gives any output given by the algorithm in response to that input.
As you can see, the first row does not have anything in the ‘character read’ column; it shows the
status of the compression buffer and the dictionary at the very beginning of the algorithm.

Question 1.2
Compress the string luwlueisluei using LZ78.

Question 1.3
I compress a 15 character string, which uses only the digits 0 to 9, using LZ78. What is the

maximum length of the output string? What is the minimum? How about for a 100 character input?
[We define the length to be the number of pairs to occur in the output.]

Question 1.4
In the above algorithm, the tests to see if a string is in the dictionary could, if we implement

them by comparing against each string in the dictionary in turn, be quite time consuming. Outline,
briefly, a way of implementing the algorithm which avoids this.

Question 1.5
Of course, compression is no good unless decompression is possible. Describe an algorithm which

inputs a LZ78 compressed message, and outputs the original message.

2. The Burrows-Wheeler transform

The Burrows-Wheeler transform is a relatively recent development in compression. It inputs
a string, and outputs a string of the same length, together with a number. Thus the transform
represents an expansion rather than a compression! The point is that the output string often
contains long blocks of a repeated character with occasional occurrences of other characters. For
example, here is an excerpt from the transform of the text of this question:

diibbbtubupreeeeeeeeevvthellmL vhtvtthhehhher glll mpicmmmmm

Thus one good strategy in compressing a document is to apply the transform to it first, and
then to apply a compression algorithm to the output. (The Burrows-Wheeler transform is reversible
so we will be able to recover the original text.) The results will often be much better than if
the compression algorithm were applied directly to the original document. We shall illustrate the
technique by constructing the Burrows-Wheeler transform of the string BIOFINAL.

Consider an array, the ith row of which consists of the input string ‘rotated round’ i− 1 times;
then sort the rows array into alphabetical order, viewing each row as a single word. For example,
on the string BIOFINAL:

unsorted

BIOFINAL

IOFINALB

OFINALBI

FINALBIO

INALBIOF

NALBIOFI

ALBIOFIN

LBIOFINA

sorted

ALBIOFIN

BIOFINAL

FINALBIO

INALBIOF

IOFINALB

LBIOFINA

NALBIOFI

OFINALBI



Observe that each column contains the same letters as the original message, but reordered, and
that the first column of the array just consists of the input string sorted into alphabetical order.

Question 2.1
Actually storing the whole of the above array would require a very large amount of memory.

(For an n letter string, the array contains n2 letters.) Explain, briefly, how this can be avoided.

Having done this, the Burrows-Wheeler transform of the input data consists of two things; the
last column of the sorted two-dimensional array and the starting index (the number of the row in
the sorted array which contains the original string). In our case, the original string BIOFINAL occurs
in row 2, so 2 is the starting index; and the final transform is (NLOFBAII,2).

Question 2.2
What is the Burrows-Wheeler transform of the string IOICOMPETITION? (You should show your

working, including the array in both sorted and unsorted forms).

It might seem surprising at this point, but it is possible to recover the original string from its
transform. To see how this can be done, we shall reconstruct the message which gives rise to the
transformed string (SMELLSPI, 5). We know that the last column of the sorted array must be
SMELLSPI. Thus the original message consists of the letters SMELLSPI in some order, and so the first
column of the array, which consists of these letters in alphabetical order, is EILLMPSS. Thus the
array looks like:

E??????S

I??????M

L??????E

L??????L

M??????L

P??????S

S??????P

S??????I

Question 2.3
There is now enough information available to fill in the second column of the array. What should

it be? (You should provide a brief justification of your answer.)

Question 2.4
What was the original message that gave the transform (SMELLSPI, 5)?

Question 2.5
Describe a general algorithm to restore a message from its Burrows-Wheeler transform. You

should try to make it as efficient as possible.

Finally, we now turn to the question of why the results of the Burrows-Wheeler transform are so
easily compressible.

Question 2.6
Suppose you are given a string of 9 characters that only uses the characters a and b, and has no

more than 2 consecutive a’s or b’s. What is the largest number of consecutive a’s that can appear
after transformation? What is the smallest?


